Hybrid CPU–GPU implementation of the transformed spatial domain channel estimation algorithm for mmWave MIMO systems

نویسندگان

چکیده

Abstract Hybrid platforms combining multicore central processing units (CPU) with many-core hardware accelerators such as graphic (GPU) can be smartly exploited to provide efficient parallel implementations of wireless communication algorithms for Fifth Generation (5G) and beyond systems. Massive multiple-input multiple-output (MIMO) systems are a key element the 5G standard, involving several tens or hundreds antenna elements communication. Such high number antennas has direct impact on computational complexity some MIMO signal algorithms. In this work, we focus channel estimation stage. particular, develop implementation recently proposed algorithm. Its performance in terms execution time is evaluated both CPU GPU. The results show that computation blocks algorithm more suitable implementation, whereas other parts efficiently implemented GPU, indicating hybrid CPU–GPU would achieve best practical applications based tested platform.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

Frequency-domain Compressive Channel Estimation for Frequency-Selective Hybrid mmWave MIMO Systems

Channel estimation is useful in millimeter wave (mmWave) MIMO communication systems. Channel state information allows optimized designs of precoders and combiners under different metrics such as mutual information or signal-to-interference-noise (SINR) ratio. At mmWave, MIMO precoders and combiners are usually hybrid, since this architecture provides a means to trade-off power consumption and a...

متن کامل

Hybrid pilots assisted channel estimation algorithm for MIMO-OFDM systems

A hybrid pilots assisted channel estimation algorithm for multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems under low signal-to-noise ratio (SNR) and arbitrary Doppler spread scenarios is proposed. Motivated by the dissatisfactory performance of the optimal pilots (OPs) designed under static channels over multiple OFDM symbols imposed by fast fading...

متن کامل

Deep Learning-based Channel Estimation for Beamspace mmWave Massive MIMO Systems

Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave (mmWave) massive multiple-input and multiple-output systems. To solve this problem, we exploit a learned denoising-based approximate message passing (LDAMP) network. This neural network can learn channel structure and estimate channel from a larg...

متن کامل

Iterative Channel Estimation Using LSE and Sparse Message Passing for MmWave MIMO Systems

We propose an iterative channel estimation algorithm based on the Least Square Estimation (LSE) and Sparse Message Passing (SMP) algorithm for the Millimeter Wave (mmWave) MIMO systems. The channel coefficients of the mmWave MIMO are approximately modeled as a Bernoulli-Gaussian distribution since there are relatively fewer paths in the mmWave channel, i.e., the channel matrix is sparse and onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Supercomputing

سال: 2023

ISSN: ['0920-8542', '1573-0484']

DOI: https://doi.org/10.1007/s11227-022-05018-w